电商运营数据分析的指标有哪些(电商运营的三大指标)
本文目录
电商数据分析需要统计哪些指标
最重要的就是这几个了:
1、商品数据分析:电商平台定期都要对商品销售进行分析,比如针对各个不同商品的销量、库存分析、商品评论等。做商品数据分析,可以从时间维度或者从不同商品的类别、价格等多个维度来做分析,这里可以做的数据图表类型很多,比如从时间维度、商品类别、价格维度等;
2、访问流量分析:渠道质量、跳出率、PC/UV、访问时长、转化率等;
3、订单数据分析:成交额、成交率、客单价等;
4、用户行为分析:新老用户购买情况、复购率、活跃率等;
5、营销活动分析:ROI、活动效果、营销成本等;
以上电商相关的可视化图表的制作工具为BDP个人版,可以将各个平台数据统一整合到BDP,然后做好一次分析图表,后期就不需要重复分析啦!
电商数据分析是什么
电商数据分析包括了大行业大平台的数据状况,也可以是小到店铺、单品、sku的某个某个维度详细数据分析。
除了常规的商品型号、商品价格、促销信息、店铺名称等,还可以自定义其他维度、可以说说是做到了全方位展现渠道违规行为,满足多样化的巡检场景需求。
从流量、订单、总体销售业绩、整体指标进行把控,起码对运营的电商平台有个大致了解,到底运营的怎么样,是亏是赚。
电商分析数据方法如下:
一、依据用户画像,洞察需求
用户画像即用户信息标签化,通过收集用户的社会属性、消费习惯、偏好特征等各个维度的数据,进而对用户或产品特征属性进行刻画,并对这些特征进行分析、统计,挖掘潜在价值信息,从而抽象出用户的信息全貌。
二、依据渠道数据分析用户来源
对电商卖家来说,分析“访客数”最重要的是分析“流量来源”。分析不同流量来源的“数量”和“支付转化率”,找出“支付转化率”比较高的流量来源并想办法提高,不仅可以提高“访客数”还可以提高整体的“支付转化率”。
这时利用数据分析工具能为不同渠道的表现提供总览,并给出目标转化率。当涉及到有机搜索时,分析一些像搜索量和关键词排名的指标能帮你获得更多的见解,比如该将广告预算花在哪儿,如何让用户更容易搜索到你等等。
三、店内转化率的数据分析
当用户来到店铺时,我们就要想办法将他们转化成顾客,但众所周知,并不是每个来店里的用户都会点加入购物车按钮。甚至在加入购物车后,也会有改变主意离开网站的可能。所以这一步我们可以用下面的电商转化指标来跟踪和优化线上购物体验:
1、销售转化率——已购买的用户和全部来到店铺的用户比值。
2、平均订单价值——用户下单的平均金额。
3、放弃购物车率——在所有产生的订单中,未完成订单的占比。
四、提高营销推广的ROI
对店铺来说,如今流量已进入存量时代,营销渠道分散且复杂,更需要卖家依据数字化营销提高推广的RIO,通过数据分析,加强线上营销的精准,拓展线下新的营销场景,利用数据智能完成全场景全链路的布局,以达到高效转化与品效相结合。
五、产品数据分析
1、产品数据分分析
①整体分析:分为两个部分:销售表现和购物行为。销售表现包括各个商品带来的收入,至少购买过一次的用户数,平均订单价格、数量,退款数目等等。购物行为,你可以看到浏览了产品详情页的用户里,加入购物车的人数;或浏览产品详情页后最终下单的人数。
②购物行为分析——我们可以依据更多和商品有关的数据,比如商品浏览页访问量、商品详情页访问量、加入/移出购物车的商品,进入结算阶段的商品,以及购买人数来对用户购物行为进行分析。
2、销量数据分析
我们可以从后台数据分析中找到关于收入,税费、运费、退款金额,和卖出的商品数量。其中,总销售额以金额的形式呈现,是衡量我们线上店铺经营状况最佳的“整体主要指标”(OMM)之一,可以用它来衡量业务的整体增长和发展趋势。
六、用户留存数据分析
聪明的商家知道忠诚顾客的价值。能够留住用户给你长期带来收入。永远要记住的是,获取新用户比留住老用户成本大得多。研究显示,用户留存率提升5%就能带来25%到95%的利润。
七、用户推荐数据分析
对卖家来说,我们要识别出哪些用户是你的真爱。他们不仅爱你的产品,也愿意向家人和朋友推荐,他们简直是你的品牌大使。成功的电商企业会密切关注着这一阶段的指标并及时做出反应。
电商数据分析要掌握哪些数据指标
运营模块
运营的主要职责是达成销售目标,同时控制运营成本。所以在这一模块我们主要关注三个数据指标:业绩达标率、业绩增长率、销售利润额。这三个指标非常好理解,主要是用来综合评估运营水平。
商品模块
这一模块主要涉及两个职能,商品企划和商品运营。
商品企划的主要职能是在一个销售周期内,对商品的品类、价格带、风格、销售进度进行整体把控,避免使用单一产品冲业绩。
商品运营的主要职能是负责商品的上架、入库以及主推策划,通常流程是:测款-养款-爆款-返单。当然,一个店铺也不能打造过多的爆款,爆款的增多会损害品牌调性,到这一旦折扣下降就会引起消费者流失的局面。
市场模块
市场模块是仅次于运营的第二大模块,同时又和运营的工作密不可分。主要包括市场推广投放、会员维护、活动包装等等。
其中,推广是一个店铺的重中之重,也是我们数据分析的主要对象,推广包括包括付费和免费两种渠道,付费渠道比如我们熟知的直通车、钻展等等,免费推广如微博、贴吧等等。定时的进行会员维护会促进会员沉淀,活跃的会员可以有效的节省推广费用。
视觉设计模块
这部分模块中,我们主要分析的还是店铺流量的漏斗转化路径。主要涉及的包括:页面逻辑、标签分类、主推商品。这部内容对应的就是我们常说的流量分析,分析客户的访问路径,并结合漏斗模型,看看那部分的转化对最终的转化率影响最大并进行优化。
关于电商数据分析要掌握哪些数据指标,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
电商运营的基本数据指标有哪些
电商运营的基本数据指标四个指标,如下:
第一个指标:商品集中度,表示的销售额或者销售量之中,占比80%(具体数字可以自行约定)的商品数量或者比例。一般来讲,商品集中度越高越方便下单和追单,也就是补货更加容易,但是同时也暴露优质商品较少,有潜在风险,尤其季节性快消品类目,一旦处于换季边缘,集中度高的商品不给力,整个销售业绩将受到重挫,所以要联系所处品类的行业参考值,合理观察“商品集中度”;
第二个指标:商品动销率,商品动销率=动销品种数店铺经营总品种数*100%,动销品种数:店铺里有销售的商品种类总数;
第三个指标:库销比,库销比=店铺即时库存或期末库存周期内总销售,其中库存和销售可以是数量亦可以是金额;
第四个指标:客户重合度,现在很多电商公司都是实施全网铺货和多品牌的战略(多品牌定位可以使市场覆盖面更广且抵御风险能力更强),为了使新品牌更快更有效的启动和成长,通常的做法是在初期把成熟品牌的网站流量导入到新品牌,加速其生长,这时候一定要计算新品牌和老品牌之间的客户重合度,以便达到一定的阈值可以使新品牌与老品牌解绑,让其独立行走。
过早地撤走流量可能致使新品牌发育迟缓甚至发育不良,过晚撤走流量可能致使多品牌同质化,品牌定位无区隔,不能有效产生增量市场。当然,追踪成熟品牌与新品牌重合客户的差异和特质只用“重合度”一个指标显然是不够的,我们可以这样来比较两个品牌,假设成熟品牌是A,新品牌是B:
(1)两个品牌的客户重合比例是多少?
(2)在(1)的基础上,计算重合客户的重复购买率?
(3)在(1)的基础上,计算重合客户自从在B买过商品之后就再也没有回到A购物过的客户比例?
(4)在(1)(2)(3)的基础上同时满足,客户的比例是多少?
这里必须着重强调一点:数据指标的统计务必保证100%的准确性。数据的准确性不仅决定了将来做数据分析丶挖掘和数学建模的深度与广度,更体现了数据的权威性,尤其关键指标的统计倘若经常出现差池,会让所有人对数据失去信任,对基于数据得出的结论也随之信心瓦解了。