最近有遇到个比较棘手的产品,符合产品的受众人群比较窄,而且..产品还不算是刚需产品,几乎很难找到一些合适推广的点,产品号称的各类产品特色哪一条拿出来似乎都不能拿来吸引人到非核心人群。 在推广2-3个月之后,洗完了核心人群(最容易骗的那帮)可以看到产品的转化率 简直 是瀑布式下降,直接从100曝光1个转化掉到了350曝光转化1。 结果就是单价直接翻倍...同时还能看到留存/roi直线下降。 刚好早上
之前一直不太愿意提这个方向,最近也是在研究,虽然不是100%确信,但是可以分享一下自己的猜测,等有确切的实验数据可以再做分享。 ASO可以优化的点 1,标题,短描述,长描述。 2,置顶大图,icon,商店图。 3,产品优化的点...但是这里不展开说,之前文章大概提到过优化产品对排名之类的帮助。 优化方向: 1,用户看到的能打动用户的一些包装性质的东西,比如电商app的标题里面写了9.9包邮之类,精
猜测IOS 14之后估计会有一些变化: 1,广告素材上的变化,由于没办法想以前那样定位精准,数据反馈及时,那么广告素材未来会有2个趋势,一种是非常高质量的高转化的素材,可能是做工精良,可能是创意十足,另一种可能就是我们讨厌的类型,下三滥,低俗,色情,或者简单粗暴的一些类似注册送钱之类的素材。 由于无法精准定位,转化率的下降,所以中间素材大概率会活不下去。只有两个极端才能获得比较高的转化。 2,产品
按照af的数据,因为用户不给idfa,导致了整个量少了,竞争加剧,单价上升了30%。所以再等整体更新后只会更贵,大家曝光的机会更少,以及整体的转化下降。 后面应该重点做的: 1,asa,其他广告的转化下降,用户的需求得不到满足后用户可能逐步会把自己的喜欢变成看到品牌广告后去做搜索行为。 2,非下载类推广,换成网页追踪部分转化,比如邮箱注册,手机注册等。推广的时候先引导到页面去做注册,给一些好处,之
早上起来一看数据跟昨天一样,继续翻倍,昨天晚上看还基本正常了的,结果早上又跪了!但是从第三方的数据来看,基本上用户层转化应该数据还是正常的。 我也不好意思今天早上又把这个话题再发一篇文章。 补充一下最近两条比较重要的消息: 1, Facebook分析关闭了。 Facebook Analytics is Going Away Facebook Analytics will no longer be
为了帮助产品更多的“骗”量,或者提高产品数据,我们可以从多个方向去尝试优化产品和市场配合,提高数据。 主要的几个方向: 1,市场先宣传一些没有的功能,效果好了产品去做功能。比如playrix的抽杆子,不存在的照片一键美化,特殊妆容等。 2,产品内设计一些活动,市场拿来做宣传,通常是送钱,送手机,各种促销等。 3,产品内增加一些比较大的功能点(各类产品加入撩骚功能+AI小姐姐),能辅助提高留存以便可
前段时间自己尝试的AAA基本翻车了,最近花了两个星期在继续尝试,略有好转。 产品类型比较特殊,不属于常规的社交,或者工具,金融等,而是对素材时效性要求比较高的一个类别,其实本质上这个类别也许是不合适跑AAA广告的,毕竟AAA的思路就是降低投放难度,帮助中小客户免维护用的。 总结: 1, 垂直类/素材常年不用大变化的产品可以和UAC一样跑,不怎么更新没问题。 2,即时性比较强的产品,不用在意是否重新
二月初的时候,AAA的api放出来,我大概花了一周的时间请技术快速实现了整个AAA的api自动投放,包含上传,更新,自动优化,数据统计等。到现在差不多刚好一个月,结果跑下来只能给大家分享一下翻车的经验了。 首先给大家看个数,我在群里面做了个问卷调查,看大家到底AAA算是成了还是败了的。其实看投票结果感觉AAA应该可以算是一个成功的优化了,哪怕只有60%的人觉得是成功了,但是考虑到AAA这才半年多,
Facebook广告learning limited和重大修改导致ad重新学习的汇总 前面一片说到如何让Facebook更快度过学习期的好处,以及导致重新学习的一些问题,请关注前一篇文章: Facebook 如何快速度过学习阶段+好处 同时也提到了一种情况 Learning limited,出现这个状态表示广告组学习期数据不足无法脱离学习状态(在上次修改之后的7天左右无法凑到50个转化),出现这个
2周之前做了一个测试:验证对比新广告坚持24小时不关闭的和7-8小时就开始关闭表现不好的广告。一开始再欧美测试基本不成功,没啥差别,但是后来在穷地区做测试后发现坚持24小时不做处理的广告跑的更好,佛系状态下个广告曝光更多,学出来的机会也更多,相对也有更多广告能在1-2天脱离学习状态,靠跑出来的广告价格稀释掉前面的学习成本。 同时最近在不断优化自己的自动化投放,遇到最大的问题其实就是很难控制程序在恰
顺着今天朋友问的问题写一个Facebook的素材审核速度问题,主要内容也只是我个人在上传广告过程中观察到的一些规律,并非实际的官方解释。 现象: 不同产品,不同地区的广告审核速度不同,甚至不同时间段的审核都不同,通常的规律如下: 1,穷地区,比如印度之类的素材审核速度比欧美快,尤其是美国。目测基本是越穷的地区,素材审核的速度越快。 2,老产品的素材审核速度,通常比新产品快,但是前提是老产品记录良好
今天和朋友聊天,聊到游戏行业或者社交行业的创业门槛越来越大了,仔细想想其实各个行业都差不多,越往后,新团队想做成功的难度只会越来越大。 以游戏行业为例,现在几乎不再存在可能个人或者小团队出来做一款大型游戏创业能成功,从资本,人才,游戏积累的各个方向几乎都很难了,有大牌游戏成功经验的制作人需要筹集40-50个人的2-3年的开销,而且还要能够拉到一个40-50个行业优秀人才一起创业,这个难度凑到一起就
Facebook VideoView的投放 我们应该都是了解Facebook的相似受众投放的方法,比如自己上传一个人群包,或者用App的活跃用户或者完成过某个行为事件的人群做一个Looklike来做投放。 常规做法: 1,用最核心的人群做looklike,比如下单,付费的用户去投放一些宽泛一点的素材,或者跑一些非AEO,VO之类。 2,用最核心的素材去尝试跑一些基础行为的looklike去跑,或
案例分析: 为什么自然量留存还不如买量留存 其实一般情况下,我们遇到的情况通常会是自然量留存(ROI)比较高,买量留存通常情况下要比自然量低,尤其是产品在中后期,素材+人群都不是足够匹配。实际投放过程中,我们也会遇到不少买量留存反而比自然量留存更高的。 这种情况比如: 1,产品品质在不高的情况下,前期通过买量过来的用户,尤其是Facebook这种精准人群配合核心素材买量,整体留存效果(ROI效果)
测试期间的产品精准买量的必要性? 定义:精准买量,大概是说的通过很核心介绍产品的素材,去跑AEO或者UAC2.5的操作。 通常我们会认为市场人员最重要的就是帮产品找到精准的人群。但是其实在产品测试期间或者初期的时候,这么操作并不完全合理,在某些产品类型上,初期的流量尽可能宽泛,不论是否精准都导进去,才能充分的暴露出产品的问题。对应运营和产品人员才能有足够的机会看到产品存在的问题,并且加以改进优化。